3.3.81 \(\int \sqrt {c x} (\frac {a}{x}+b x^n)^{3/2} \, dx\)

Optimal. Leaf size=117 \[ -\frac {2 a^{3/2} c \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {a}}{\sqrt {x} \sqrt {\frac {a}{x}+b x^n}}\right )}{(n+1) \sqrt {c x}}+\frac {2 a \sqrt {c x} \sqrt {\frac {a}{x}+b x^n}}{n+1}+\frac {2 (c x)^{3/2} \left (\frac {a}{x}+b x^n\right )^{3/2}}{3 c (n+1)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2028, 2031, 2029, 206} \begin {gather*} -\frac {2 a^{3/2} c \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {a}}{\sqrt {x} \sqrt {\frac {a}{x}+b x^n}}\right )}{(n+1) \sqrt {c x}}+\frac {2 a \sqrt {c x} \sqrt {\frac {a}{x}+b x^n}}{n+1}+\frac {2 (c x)^{3/2} \left (\frac {a}{x}+b x^n\right )^{3/2}}{3 c (n+1)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c*x]*(a/x + b*x^n)^(3/2),x]

[Out]

(2*a*Sqrt[c*x]*Sqrt[a/x + b*x^n])/(1 + n) + (2*(c*x)^(3/2)*(a/x + b*x^n)^(3/2))/(3*c*(1 + n)) - (2*a^(3/2)*c*S
qrt[x]*ArcTanh[Sqrt[a]/(Sqrt[x]*Sqrt[a/x + b*x^n])])/((1 + n)*Sqrt[c*x])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2028

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b
*x^n)^p)/(c*p*(n - j)), x] + Dist[a/c^j, Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c,
j, m, n}, x] && IGtQ[p + 1/2, 0] && NeQ[n, j] && EqQ[Simplify[m + j*p + 1], 0] && (IntegerQ[j] || GtQ[c, 0])

Rule 2029

Int[(x_)^(m_.)/Sqrt[(a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[-2/(n - j), Subst[Int[1/(1 - a*x^2
), x], x, x^(j/2)/Sqrt[a*x^j + b*x^n]], x] /; FreeQ[{a, b, j, n}, x] && EqQ[m, j/2 - 1] && NeQ[n, j]

Rule 2031

Int[((c_)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracPar
t[m])/x^FracPart[m], Int[x^m*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && IntegerQ[p + 1/2]
 && NeQ[n, j] && EqQ[Simplify[m + j*p + 1], 0]

Rubi steps

\begin {align*} \int \sqrt {c x} \left (\frac {a}{x}+b x^n\right )^{3/2} \, dx &=\frac {2 (c x)^{3/2} \left (\frac {a}{x}+b x^n\right )^{3/2}}{3 c (1+n)}+(a c) \int \frac {\sqrt {\frac {a}{x}+b x^n}}{\sqrt {c x}} \, dx\\ &=\frac {2 a \sqrt {c x} \sqrt {\frac {a}{x}+b x^n}}{1+n}+\frac {2 (c x)^{3/2} \left (\frac {a}{x}+b x^n\right )^{3/2}}{3 c (1+n)}+\left (a^2 c^2\right ) \int \frac {1}{(c x)^{3/2} \sqrt {\frac {a}{x}+b x^n}} \, dx\\ &=\frac {2 a \sqrt {c x} \sqrt {\frac {a}{x}+b x^n}}{1+n}+\frac {2 (c x)^{3/2} \left (\frac {a}{x}+b x^n\right )^{3/2}}{3 c (1+n)}+\frac {\left (a^2 c \sqrt {x}\right ) \int \frac {1}{x^{3/2} \sqrt {\frac {a}{x}+b x^n}} \, dx}{\sqrt {c x}}\\ &=\frac {2 a \sqrt {c x} \sqrt {\frac {a}{x}+b x^n}}{1+n}+\frac {2 (c x)^{3/2} \left (\frac {a}{x}+b x^n\right )^{3/2}}{3 c (1+n)}-\frac {\left (2 a^2 c \sqrt {x}\right ) \operatorname {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {1}{\sqrt {x} \sqrt {\frac {a}{x}+b x^n}}\right )}{(1+n) \sqrt {c x}}\\ &=\frac {2 a \sqrt {c x} \sqrt {\frac {a}{x}+b x^n}}{1+n}+\frac {2 (c x)^{3/2} \left (\frac {a}{x}+b x^n\right )^{3/2}}{3 c (1+n)}-\frac {2 a^{3/2} c \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {a}}{\sqrt {x} \sqrt {\frac {a}{x}+b x^n}}\right )}{(1+n) \sqrt {c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 97, normalized size = 0.83 \begin {gather*} \frac {2 \sqrt {c x} \sqrt {\frac {a}{x}+b x^n} \left (\sqrt {a+b x^{n+1}} \left (4 a+b x^{n+1}\right )-3 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b x^{n+1}}}{\sqrt {a}}\right )\right )}{3 (n+1) \sqrt {a+b x^{n+1}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c*x]*(a/x + b*x^n)^(3/2),x]

[Out]

(2*Sqrt[c*x]*Sqrt[a/x + b*x^n]*(Sqrt[a + b*x^(1 + n)]*(4*a + b*x^(1 + n)) - 3*a^(3/2)*ArcTanh[Sqrt[a + b*x^(1
+ n)]/Sqrt[a]]))/(3*(1 + n)*Sqrt[a + b*x^(1 + n)])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 1.50, size = 123, normalized size = 1.05 \begin {gather*} \frac {\sqrt {c x} \sqrt {\frac {a}{x}+b x^n} \left (\frac {2 \sqrt {c} \left (\left (a+b x^{n+1}\right )^{3/2}+3 a \sqrt {a+b x^{n+1}}\right )}{3 (n+1)}-\frac {2 a^{3/2} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {a+b x^{n+1}}}{\sqrt {a}}\right )}{n+1}\right )}{\sqrt {c} \sqrt {a+b x^{n+1}}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[c*x]*(a/x + b*x^n)^(3/2),x]

[Out]

(Sqrt[c*x]*Sqrt[a/x + b*x^n]*((2*Sqrt[c]*(3*a*Sqrt[a + b*x^(1 + n)] + (a + b*x^(1 + n))^(3/2)))/(3*(1 + n)) -
(2*a^(3/2)*Sqrt[c]*ArcTanh[Sqrt[a + b*x^(1 + n)]/Sqrt[a]])/(1 + n)))/(Sqrt[c]*Sqrt[a + b*x^(1 + n)])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(1/2)*(a/x+b*x^n)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (b x^{n} + \frac {a}{x}\right )}^{\frac {3}{2}} \sqrt {c x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(1/2)*(a/x+b*x^n)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^n + a/x)^(3/2)*sqrt(c*x), x)

________________________________________________________________________________________

maple [F]  time = 0.67, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {c x}\, \left (b \,x^{n}+\frac {a}{x}\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(1/2)*(b*x^n+a/x)^(3/2),x)

[Out]

int((c*x)^(1/2)*(b*x^n+a/x)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (b x^{n} + \frac {a}{x}\right )}^{\frac {3}{2}} \sqrt {c x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(1/2)*(a/x+b*x^n)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^n + a/x)^(3/2)*sqrt(c*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \sqrt {c\,x}\,{\left (b\,x^n+\frac {a}{x}\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(1/2)*(b*x^n + a/x)^(3/2),x)

[Out]

int((c*x)^(1/2)*(b*x^n + a/x)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {c x} \left (\frac {a}{x} + b x^{n}\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**(1/2)*(a/x+b*x**n)**(3/2),x)

[Out]

Integral(sqrt(c*x)*(a/x + b*x**n)**(3/2), x)

________________________________________________________________________________________